
11.04.2023

Hello World – Using Microblaze
Softcore
In this tutorial we will create a Vivado project and add a MicroBlaze softcore. For the programming of
the softcore we will use Vitis. Later on we will load the program to the flash of the FPGA. If we are
successful, we will receive “Hello World” on our terminal program.

Tools we need:
● Alchitry AU
● USB-C Cable

● Vivado 2022.2

● Vitis 2022.2

● Alchitry Loader 1.0

● A terminal program of your choice

Content

Part one: Creating the Block Design in Vivado 2
Create a new Project 2

Creating the Block Design 3

Adding Constraints 7

Generate Bitstream 8

Part two: Writing the Program in VITIS 10
Create a Platform Project 10

Create an Application Project 11

Part three: Loading the Configuration and the Program in the Flash 13

Florian Hartmann 1/15



11.04.2023

Part one: Creating the Block Design in Vivado
Create a new Project
Open VIVADO and create a new Project by clicking on „Create Project“

On the next page specify project name and location.

Next we select RTL Project and „Do not specify sources at this time“, as we have no source file at this

moment.

Than we have to select our FPGA. The Alchitry Au–Board is using the „Xc7a35tftg256-1“.

Click on „finish“.

After some seconds you should see the Vivado develop environment.

Florian Hartmann 2/15



11.04.2023

Creating the Block Design
In Vivado the block design is used to create the top file by using graphic blocks. In the Project

Manager we click on „Create Block Design“.

.

On the next dialog we just click on „OK“.

Now you see the empty diagram.

As Vivado tells us, you can add IP Blocks by clicking on the plus “Add IP”. For our design we need:

● MicroBlaze

● MicroBlaze Debug Module (MDM)

● AXI Interrupt Controller

● Clocking Wizard

● Processor System Reset

● AXI Uartlite

Add them all.

Florian Hartmann 3/15



11.04.2023

Afterwards there are all blocks lying around without any connection.

Some of these blocks need configurations to make. Luckily Vivado helps us here. Click on “Run Block

Automation”.

You can see, our MicroBlaze needs some configuration. Please give it 64KB of Local Memory. The

preselected 8KB are not enough for the “printf” command which we need later. Even the size

optimized “xil_printf” will not fit in 8KB of local memory.

After clicking on “OK” you can see that Vivado created some connections.

Next click on “Run Connection Automation” and select all and quit with “OK”.

Florian Hartmann 4/15



11.04.2023

Vivado did a great job! Almost everything is now connected. However, our interrupt line is missing. If

the AXI Uartlite receives a signal it will generate an interrupt flag. We are not using the receiving

function in this tutorial. However, I am sure you will use it later.

So, connect the interrupt output of the AXI Uartlite with the AXI Interrupt Controller:

Connect the AXI Interrupt Controller with the MicroBlaze itself.

Florian Hartmann 5/15



11.04.2023

Our diagram is finish and should look like this:

Now, that we have our diagram, we need one more step to generate our top file. Therefore right click

on Design_1->Create HDL Wrapper…

This wrapper translates the diagram to the top file with its Verilog design and automaticly keeps it up

to date.

In the Sources-Window you can see why the call it wrapper:

Florian Hartmann 6/15



11.04.2023

If you open the design_1.v, you can see the typical Verilog design of the top file:

Adding Constraints
Now that our block diagram and top file are finished, we need a constraint file to specify our inputs

and outputs.

Right click on Constr_1->Add Sources…

On the next windows please create a new file.

Florian Hartmann 7/15



11.04.2023

Open Alchitry.xdc and add these lines:
set_property PACKAGE_PIN N14 [get_ports clk_100MHz]
set_property IOSTANDARD LVCMOS33 [get_ports clk_100MHz]
set_property PACKAGE_PIN P6 [get_ports reset_rtl_0]
set_property IOSTANDARD LVCMOS33 [get_ports reset_rtl_0]

set_property BITSTREAM.GENERAL.COMPRESS TRUE [current_design]
set_property BITSTREAM.CONFIG.CONFIGRATE 33 [current_design]
set_property CONFIG_VOLTAGE 3.3 [current_design]
set_property CFGBVS VCCO [current_design]

set_property PACKAGE_PIN P15 [get_ports uart_rtl_0_rxd]
set_property PACKAGE_PIN P16 [get_ports uart_rtl_0_txd]
set_property IOSTANDARD LVCMOS33 [get_ports uart_rtl_0_rxd]
set_property IOSTANDARD LVCMOS33 [get_ports uart_rtl_0_txd]

I guess these lines are not unfamiliar to you…

And done!

Generate Bitstream
The last step in Vivado is to generate a bitstream. In the Flow Navigator click on “Generate Bitstream”

In the top right corner you can see what Vivado is doing at the moment. Synthesis, Implementation,

… and after some minutes it will state “write_bitstream Complete”.

Now, we have to export our hardware design, so that we can use it in VITIS. Click on

File->Export->Export Hardware Platform.

Select “Include bitstream”.

Florian Hartmann 8/15



11.04.2023

On the next page you can see were the XSA file will be stored.

Click on Finish

Done!

Florian Hartmann 9/15



11.04.2023

Part two: Writing the Program in VITIS
Create a Platform Project
First we have to create a Platform Project. Open Vitis and click on File->New->Platform Project…

Click Next

On the next dialog we click on “Browse” and navigate to our XSA-File

Click on “Finish”

In the Explorer section, we can see our Platform project.

It is out of date. So select it, and built it. Project->Build Project.

Florian Hartmann 10/15



11.04.2023

Create an Application Project
Second, we need our application project. Click on File->New->Application Project…
On the second dialog, we select our Hardware Platform:

On the next dialog, we give it a name:

On the last Dialog, we select the template: “Hello World” and click on Finish.

Florian Hartmann 11/15



11.04.2023

The helloworld.c file is located under src:

As you can see this is already a working program.

Built it.

Florian Hartmann 12/15



11.04.2023

Part three: Loading the design and the program into the flash
Now that we have our hardware design and our application software, we have to create the binary

file which we can upload to our FPGA.

Still in Vitis and still our application project selected click on Xilinx->Program Device.

A dialog opens. In the Software Configuration-Section, open the dropdown menu and click on

“Browse…” (Sometimes there is a double click necessary, otherwise the browse window will not

appear ... a bug?)

Navigate to the elf-File and open it:

Click on “Generate”

Now our bitstream is ready to upload into our FPGA. So connect your Alchitry-Board to your

computer. But before we upload it, let us start our terminal program and connect to our

Alchitry-Board. As you have seen in helloworld.c it will only send once “Hello World”. I do want to

miss it.

Florian Hartmann 13/15



11.04.2023

Now we are prepared to see the “Hello World”. Open Alchitry Loader.

Click on “Open Bin File” change to “All Files” and navigate to download.bit.

Click on Program:

And…..

Florian Hartmann 14/15



11.04.2023

Success!!

Florian Hartmann 15/15


